22 research outputs found

    Dystrophin Orchestrates the Epigenetic Profile of Muscle Cells Via miRNAs

    Get PDF
    Mammalian musculature is a very robust and dynamic tissue that goes through many rounds of degeneration and regeneration in an individual’s lifetime. There is a biological program that maintains muscle progenitor cells that, when activated, give rise to intermediate myoblast progeny that consequently differentiate into mature muscle cells. Recent works have provided a picture of the role that microRNAs (miRNAs) play in maintaining aspects of this program. Intriguingly, a subset of these miRNAs is de-regulated in muscular dystrophies (MDs), a group of fatal inherited neuromuscular disorders that are often associated with deficiencies in the Dystrophin (Dys) complex. Apparently, transcriptional expression of many of the muscle specific genes and miRNAs is dependent on chromatin state regulated by the Dys–Syn–nNOS pathway. This puts Dystrophin at the epicenter of a highly regulated program of muscle gene expression in which miRNAs help to coordinate networking between multiple phases of muscle maintenance, degeneration, and regeneration. Therefore, understanding the role of miRNAs in physiology of normal and diseased muscle tissue could be useful for future applications in improving the MD therapies and could open new clinical perspectives

    New Dystrophin/Dystroglycan interactors control neuron behavior in Drosophila eye

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Dystrophin Glycoprotein Complex (DGC) is a large multi-component complex that is well known for its function in muscle tissue. When the main components of the DGC, Dystrophin (Dys) and Dystroglycan (Dg) are affected cognitive impairment and mental retardation in addition to muscle degeneration can occur. Previously we performed an array of genetic screens using a <it>Drosophila </it>model for muscular dystrophy in order to find novel DGC interactors aiming to elucidate the signaling role(s) in which the complex is involved. Since the function of the DGC in the brain and nervous system has not been fully defined, we have here continued to analyze the DGC modifiers' function in the developing <it>Drosophila </it>brain and eye.</p> <p>Results</p> <p>Given that disruption of <it>Dys </it>and <it>Dg </it>leads to improper photoreceptor axon projections into the lamina and eye neuron elongation defects during development, we have determined the function of previously screened components and their genetic interaction with the DGC in this tissue. Our study first found that mutations in <it>chif, CG34400, Nrk</it>, <it>Lis1, capt </it>and <it>Cam </it>cause improper axon path-finding and loss of <it>SP2353, Grh, Nrk, capt, CG34400, vimar, Lis1 </it>and <it>Cam </it>cause shortened rhabdomere lengths. We determined that <it>Nrk</it>, <it>mbl</it>, <it>capt </it>and <it>Cam </it>genetically interact with <it>Dys </it>and/or <it>Dg </it>in these processes. It is notable that most of the neuronal DGC interacting components encountered are involved in regulation of actin dynamics.</p> <p>Conclusions</p> <p>Our data indicate possible DGC involvement in the process of cytoskeletal remodeling in neurons. The identification of new components that interact with the DGC not only helps to dissect the mechanism of axon guidance and eye neuron differentiation but also provides a great opportunity for understanding the signaling mechanisms by which the cell surface receptor Dg communicates via Dys with the actin cytoskeleton.</p

    Paraffin-Embedded and Frozen Sections of Drosophila Adult Muscles

    Get PDF
    The molecular characterization of muscular dystrophies and myopathies in humans has revealed the complexity of muscle disease and genetic analysis of muscle specification, formation and function in model systems has provided valuable insight into muscle physiology. Therefore, identifying and characterizing molecular mechanisms that underlie muscle damage is critical. The structure of adult Drosophila multi-fiber muscles resemble vertebrate striated muscles 1 and the genetic tractability of Drosophila has made it a great system to analyze dystrophic muscle morphology and characterize the processes affecting muscular function in ageing adult flies 2. Here we present the histological technique for preparing paraffin-embedded and frozen sections of Drosophila thoracic muscles. These preparations allow for the tissue to be stained with classical histological stains and labeled with protein detecting dyes, and specifically cryosections are ideal for immunohistochemical detection of proteins in intact muscles. This allows for analysis of muscle tissue structure, identification of morphological defects, and detection of the expression pattern for muscle/neuron-specific proteins in Drosophila adult muscles. These techniques can also be slightly modified for sectioning of other body parts

    Genetic Modifier Screens Reveal New Components that Interact with the Drosophila Dystroglycan-Dystrophin Complex

    Get PDF
    The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-β and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought

    Stress-induced ECM alteration modulates cellular microRNAs that feedback to readjust the extracellular environment and cell behaviour

    Get PDF
    The extracellular environment is a complex entity comprising of the extracellular matrix (ECM) and regulatory molecules. It is highly dynamic and under cell-extrinsic stress, transmits the stressed organism’s state to each individual ECM-connected cell. microRNAs (miRNAs) are regulatory molecules involved in virtually all the processes in the cell, especially under stress. In this review, we analyse how microRNA expression is regulated downstream of various signal transduction pathways induced by changes in the extracellular environment. In particular, we focus on the muscular dystrophy-associated cell adhesion molecule dystroglycan capable of signal transduction. Then we show how exactly the same miRNAs feedback to regulate the extracellular environment. The ultimate goal of this bi-directional signal transduction process is to change cell behaviour under cell-extrinsic stress in order to respond to it accordingly
    corecore